YEAH A8

The Adventures of Links

Assignment overview

This is the penultimate 106B assignment!
This assignment is due Friday 3/12, and the grace period expires the following Sunday.

You're welcome to work in pairs on this assignment.

Assignment overview

This assignment consists of two parts:

1. Labyrinth - Using your debugger skills, can you escape a linked list labyrinth, made
specifically for you?

2. DNA - Now that you're comfortable inspecting linked lists, you'll need to implement a
series of functions that operate on nucleotides represented by linked Llists!

Part 1: Labyrinth

In this first part, you'll be attempting to escape from a maze!

Part 1: Labyrinth

In this first part, you'll be attempting to escape from a maze!
To escape, you'll need to collect three magic items: a wand, a spellbook, and a potion.

This maze exists as a linked structure consisting of these elements:

struct MazeCell {
Item whatsHere; // Item present, if any.
MazeCell* north; // The cell north of us, or nullptr if we can't go north.
MazeCell* south;
MazeCell* east;

MazeCell* west;

Part 1: Labyrinth

In this first part, you'll be attempting to escape from a maze!

To escape, you'll need to collect three magic items: a wand, a spellbook, and a potion.

This maze exists as a linked structure consisting of these elements:

struct MazeCell {

Item whatsHere; // Item present, if any.
MazeCell* north; // The cell north of us, or nullptr if we can't go north.

MazeCell* south;
enum class Item { Remember enums?

MazeCellx east; :
NOTHING, SPELLBOOK, POTION, WAND l’r\]’;i‘;’%ucouldforget

MazeCell* west;

i

Part 1: Labyrinth

Here's what an example maze might look like!

struct MazeCell {

Item whatsHere;
MazeCell* north;
MazeCell* south;
MazeCell* east;

MazeCell* west;

>

7

Imagine each of the boxes to
be a MazeCell struct.
Notice that not all have 4
valid arrow directions.
Directions that don’t lead to
other cells are nullptr.

Part 1: Labyrinth

Here's what an example maze might look like!

struct MazeCell {

Item whatsHere;
MazeCell* north;
MazeCell* south;
MazeCell* east;

MazeCell* west;

>

7

.

Imagine each of the boxes to
be a MazeCell struct.
Notice that not all have 4
valid arrow directions.
Directions that don’t lead to
other cells are nullptr.

The smiley face indicates
that you’ll begin at a random
location in the maze!

—
struct MazeCell { ./
Item whatsHere; - : .
MazeCell* north; >
MazeCellx south; R
MazeCellx east; i i i
MazeCellx west; —
s . t .
D
—

Part 1: Labyrinth

Here's what an example maze might look like!

>

7

.

Imagine each of the boxes to
be a MazeCell struct.
Notice that not all have 4
valid arrow directions.
Directions that don’t lead to
other cells are nullptr.

The smiley face indicates
that you’ll begin at a random
location in the maze!

As you can see, most
MazeCells are empty, but
some have the magical items
in them!

Part 1: Labyrinth

Here’s an example path through the labyrinth:

struct MazeCell {

Item whatsHere;
MazeCell* north;
MazeCell* south;
MazeCell* east;

MazeCell* west;

7

.

]

>

J

i

S

.
.
s

.J
‘.

\ J

Part 1: Labyrinth

Here's an example path through the labyrinth:

struct MazeCell {

Item whatsHere;
MazeCell* north;
MazeCell* south;
MazeCell* east;

MazeCell* west;

>

In this path, we effectively
went from cell start to
start->east->south.

Part 1: Labyrinth

In this path, we effectively
went from cell start to

Here's an example path through the labyrinth: start->east->south.

e N ' N 2 N e N
“«» T This path was valid because
struct MazeCell { b t 7N ¢ 7 5 i g we didn’t go through any
Item whatsHere; —~ Y — “walls” (i.e. cells that aren’t
MazeCell* north; > connected), and we even
MazeCell* south: — found a magic item!
MazeCell* east; i " 1 [
MazeCell* west; — \
) A
+ >

—
struct MazeCell { ./
Item whatsHere; - : .
MazeCell* north; >
MazeCellx south; R
MazeCellx east; i i i
MazeCellx west; —
s . t .
D
—

Part 1: Labyrinth

Here's an example path through the labyrinth:

>

7

.

In this path, we effectively
went from cell start to
start->east->south.

This path was valid because
we didn’t go through any
“walls” (i.e. cells that aren’t
connected), and we even
found a magic item!

You could represent this
subpath as the string “ES”,
where each character
represents a direction you
went from the starting
location.

Part 1: Labyrinth

bool isPathToFreedom(MazeCell* startlLocation, const string& path);

Your first task is to write the above function AA

Part 1: Labyrinth

bool isPathToFreedom(MazeCell* startlLocation, const string& path);

Your first task is to write the above function AA

Given a starting MazeCell* and a string that represents a path you can take through the

maze (i.e. NNNSEWWSSENSWENSEEWS), return whether this path was a valid path
leading to freedom!

Part 1: Labyrinth

bool isPathToFreedom(MazeCell* startlLocation, const string& path);

Your first task is to write the above function AA

Given a starting MazeCell* and a string that represents a path you can take through the
maze (i.e. NNNSEWWSSENSWENSEEWS), return whether this path was a valid path
leading to freedom!

A path leads to freedom if it: 1- never attempts to move into a direction that's nullptr (i.e.
never goes through a “wall”), and 2 - picks up all 3 magical items.

Part 1: Labyrinth

bool isPathToFreedom(MazeCell* startlLocation, const string& path);

Your first task is to write the above function AA

Given a starting MazeCell* and a string that represents a path you can take through the
maze (i.e. NNNSEWWSSENSWENSEEWS), return whether this path was a valid path
leading to freedom!

A path leads to freedom if it: 1- never attempts to move into a direction that's nullptr (i.e.
never goes through a “wall”), and 2 - picks up all 3 magical items.

You should expect to iterate through the entire string, not stopping early unless you're asked
to go through a wall (return false).

Part 1: Labyrinth

bool isPathToFreedom(MazeCell* startlLocation, const string& path);

Some notes about the problem:

- You can implement this iteratively or recursively, whichever you choose :)

Part 1: Labyrinth

bool isPathToFreedom(MazeCell* startlLocation, const string& path);

Some notes about the problem:

- You can implement this iteratively or recursively, whichever you choose :)
- You can assume that the startLocation is not nullptr, and that path always
contains NSEW characters.

Part 1: Labyrinth

bool isPathToFreedom(MazeCell* startlLocation, const string& path);

Some notes about the problem:

- You can implement this iteratively or recursively, whichever you choose :)

- You can assume that the startLocation is not nullptr, and that path always
contains NSEW characters.

- Don’t assume for this part that paths are bi-directional, but we don’t anticipate this
being a problem, because all you need to do is follow the characters in the path.

Part 1: Labyrinth

bool isPathToFreedom(MazeCell* startlLocation, const string& path);

Some notes about the problem:

- You can implement this iteratively or recursively, whichever you choose :)

- You can assume that the startLocation is not nullptr, and that path always
contains NSEW characters.

- Don’t assume for this part that paths are bi-directional, but we don’t anticipate this
being a problem, because all you need to do is follow the characters in the path.

- You shouldn't be allocating any new cells here. Making temporary pointers is fine, but
you shouldn’t be using the new keyword.

Part 1: Labyrinth

bool isPathToFreedom(MazeCell* startlLocation, const string& path);
Some notes about the problem:

- You can implement this iteratively or recursively, whichever you choose :)

- You can assume that the startLocation is not nullptr, and that path always
contains NSEW characters.

- Don’t assume for this part that paths are bi-directional, but we don’t anticipate this
being a problem, because all you need to do is follow the characters in the path.

- You shouldn't be allocating any new cells here. Making temporary pointers is fine, but
you shouldn’t be using the new keyword.

- One tricky edge case - if you find all three items, keep looping through the string. If
you happen to also move through a wall, you should return false anway.

Part 1: Labyrinth

Any Questions?

bool isPathToFreedom(MazeCell* startlLocation, const string& path);
Some notes about the problem:

- You can implement this iteratively or recursively, whichever you choose :)

- You can assume that the startLocation is not nullptr, and that path always
contains NSEW characters.

- Don’t assume for this part that paths are bi-directional, but we don’t anticipate this
being a problem, because all you need to do is follow the characters in the path.

- You shouldn't be allocating any new cells here. Making temporary pointers is fine, but
you shouldn’t be using the new keyword.

- One tricky edge case - if you find all three items, keep looping through the string. If
you happen to also move through a wall, you should return false anway.

Part 1.5: Escape from the Labyrinth

Now that you’ve written a function that can determine whether a path gets you out of a
labyrinth, it's your turn to find your way out of a personalized one!

Part 1.5: Escape from the Labyrinth

Now that you’ve written a function that can determine whether a path gets you out of a
labyrinth, it's your turn to find your way out of a personalized one!

In the file LabyrinthEscape.cpp, you'll need to put your name in the string myName:

» Labyrinth.cpp
% LabyrinthEscape.cpp * WARNING: Once you've set set this constant and started exploring your maze,

® SplicingAndDicing.cpp * do NOT edit the value of MyName. Changing MyName will change which maze you

e e * get back, which might invalidate all your hard work!
/
const string MyName = "put your name(s) here!";

Part 1.5: Escape from the Labyrinth

Once you've put your name into the file, set a breakpoint on the first test in the file (for me
it's line 33). Run your code in the debugger, and you’ll be placed in a maze personally
generated for your name!

Part 1.5: Escape from the Labyrinth

Once you've put your name into the file, set a breakpoint on the first test in the file (for me
it's line 33). Run your code in the debugger, and you’ll be placed in a maze personally
generated for your name!

This is what your debugger pane should look like when you hit the breakpoint:

Name Value Type
> startLocation MazeCell

Part 1.5: Escape from the Labyrinth

Once you've put your name into the file, set a breakpoint on the first test in the file (for me
it's line 33). Run your code in the debugger, and you’ll be placed in a maze personally
generated for your name!

This is what your debugger pane should look like when you hit the breakpoint:

Name Value Type

You’ve been given a

> startLocation MazeCell startLocation! Open
it up, and it should
behave like the
MazeCell's that you've
seen before.

Part 1.5: Escape from the Labyrinth

Here's what opening the startLocation yields me:

Name Type

¥ startLocation MazeCell
east Ox0 MazeCell *
north Ox0 MazeCell *
south Ox0 MazeCell *
west MazeCell
whatsHere Item:NOTHING (0) Item

Part 1.5: Escape from the Labyrinth

Here's what opening the startLocation yields me:

Name Value Type Notice that there’s
nothing in the
¥ startLocation MazeCell whatsHere field!

east 0x0 MazeCell *
north 0x0 MazeCell *

south 0x0 MazeCell *
west MazeCell
whatsHere [tem:NOTHING (0) Item

Part 1.5: Escape from the Labyrinth

Here's what opening the startLocation yields me:

NEInE Value Type Notice that there’s
nothing in the
¥ startLocation MazeCell whatsHere field!
east 0 MazeCell * Also, the only non-wall
No 3 place we can go is in the
north i MazeCell west direction! Let’s go
south Ox0 MazeCell * there :)

west MazeCell
whatsHere [tem:NOTHING (0) Item

Part 1.5: Escape from the Labyrinth

Here's what opening the west location yields me:

Name

v

startLocation
east
north
south
west

> east
north

> south
west
whatsHere

whatsHere

Type
MazeCell
MazeCell *
MazeCell *
MazeCell *
MazeCell
MazeCell
MazeCell *
MazeCell
MazeCell *
ltem

ltem

Rats! Nothing here too!

Part 1.5: Escape from the Labyrinth

Here's what opening the west location yields me:

Name Type
¥ startLocation MazeCell
east MazeCell *
north MazeCell *
south MazeCell *
¥ west MazeCell

> east MazeCell
north MazeCell *
south MazeCell
west MazeCell *
whatsHere [tem:NOTHING (0) Item

whatsHere NG (0) Item

Rats! Nothing here too!

Look inside the indented (west)
struct. Notice that the
west->east memory address is
identical to the startLocation
address. In this problem, all paths
are bi-directional, so take a
second to register why this must
always be true.

Part 1.5: Escape from the Labyrinth

Name
¥ startLocation
east
north Eventually, you'll find an item!
south
¥ west

b east Quiz question: What is the string
north 0x0 path starting at startLocation
south that find the POTION?

east

north
south

east
north
south
¥ east
east
north
south
west
whatsHere |Ite

Part 1.5: Escape from the Labyrinth

Name
¥ startLocation
east

north Eventually, you'll find an item!
south

¥ west
> east

Quiz question: What is the string
north 0x0 path starting at startLocation
south that find the POTION?

east
north Answer: “WSSSE”
south
east
north
south
¥ east
east
north
south
west
whatsHere |Ite

Part 1.5: Escape from the Labyrinth

Your job is to keep poking around this maze, recording where you've been / where you're
going, until you can find all 3 magic items!

Part 1.5: Escape from the Labyrinth

Your job is to keep poking around this maze, recording where you've been / where you're
going, until you can find all 3 magic items!

We highly recommend drawing lots of pictures so that you can construct an image of your
maze!

Part 1.5: Escape from the Labyrinth

Your job is to keep poking around this maze, recording where you've been / where you're
going, until you can find all 3 magic items!

We highly recommend drawing lots of pictures so that you can construct an image of your
maze!

Once you have a good idea of where your items are, write out the string path that hits all 3
of your items (i.e. NNSSEWEWWWESNEENESNWS). Put that path in the variable
ThePathOutOfMyMaze variable and run the tests -- if the test passes, then you've
successfully escaped!

Part 1.5: Escape from the Labyrinth

Your job is to keep poking around this maze, recording where you've been / where you're
going, until you can find all 3 magic items!

We highly recommend drawing lots of pictures so that you can construct an image of your
maze!

Once you have a good idea of where your items are, write out the string path that hits all 3
of your items (i.e. NNSSEWEWWWESNEENESNWS). Put that path in the variable
ThePathOutOfMyMaze variable and run the tests -- if the test passes, then you've
successfully escaped!

Any questions?

Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last
part.... but this one’s a bit different.

”~
—E S This time, the NSEW pointers may point in any direction! (for
) example, in one MazeCell, east may actually point south!)
W
More simply, put, the names of the 4 pointers in the
| N| [N MazeCell have no directional meaning.
OSss0)
: A
N S E W
E
"

Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last
part.... but this one’s a bit different.

] This time, the NSEW pointers may point in any direction! (for
E S . .
. example, in one MazeCell, east may actually point south!)
W
More simply, put, the names of the 4 pointers in the
| N| [N MazeCell have no directional meaning.
‘ S S S
[T_;[m Luckily, you can still find a way out of the maze! For example,
) . S |
Nl Es el w \ the path SW finds one of the magical items!
E
"

Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last
part.... but this one’s a bit different.

—E = When solving this maze, we've guaranteed that the

directions wont change on you (i.e. the path SW will always
S W find the top item in this maze), but you're going to have to

spend more time mapping this maze out.

N N

E|l Tw 1

E
"

Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last
part.... but this one’s a bit different.

j When solving this maze, we've guaranteed that the
E S directions wont change on you (i.e. the path SW will always
S \'% find the top item in this maze), but you're going to have to
spend more time mapping this maze out.
Y Ny N
S S S We've also guaranteed again that all paths are bi-directional,
[J;[m but as you can see, you're going to need to be careful to
Nl Es . T E™ A figure out which path is the way back.
B E
"

Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last
part.... but this one’s a bit different.

To determine whether a neighboring pointer moves you to a
new location, you can look at the memory address

Name Type
¥ startLocation MazeCell
¥ east MazeCell
east 0x0 MazeCell *

E

)
E
S| w
Y N
Nl Ts E] W
—_

S
N
S e S > north MazeCell
> south MazeCell
west 0x0 MazeCell *

A

whatsHere [tem:NOTHING (0) Item
north MazeCell
south 0x0 MazeCell *
west Ox0 MazeCell *

whatsHere tem:NOTHING (0) Item

Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last
part.... but this one’s a bit different.

”~
- m
. = To determine whether a neighboring pointer moves you to a
. new location, you can look at the memory address
W Name Type
¥ startLocation MazeCell
N N ¥ east MazeCell
east 0x0 MazeCell *
S S " S > north MazeCell If move east,
> south MazeCell which direction
1 west 0x0 MazeCell *
N S E W * whatsHere Item:NOTHING (0) Iltem moves me back
E north MazeCell to the start
< south 0x0 MazeCell * location?
m west Ox0 MazeCell *)

S whatsHere tem:NOTHING (0) Item

Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last
part.... but this one’s a bit different.

”~
- m
. = To determine whether a neighboring pointer moves you to a
. new location, you can look at the memory address
W Name Type
¥ startLocation MazeCell
N N ¥ east MazeCell
east 0x0 MazeCell *
S S " S > north |:| MazeCell If move east,
> south MazeCell which direction
1 west 0x0 MazeCell *
N S E W * whatsHere Item:NOTHING (0) Iltem moves me back
E north MazeCell to the start
< south 0x0 MazeCell * location?
m west Ox0 MazeCell *)

S whatsHere tem:NOTHING (0) Item

Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last

part.... but this one’s a bit different.

j In this way, you will (slowly and carefully) figure out which

E S links bring you to new maze locations and which ones turn

S W you in loops. Pay attention to the memory addresses at all

times because you might end up looping back to a cell that

! N| [N you had visited long ago!
(I 0
Nl Ts el Tw 1
B E
"

Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last
part.... but this one’s a bit different.

j In this way, you will (slowly and carefully) figure out which
E S links bring you to new maze locations and which ones turn
S W you in loops. Pay attention to the memory addresses at all
times because you might end up looping back to a cell that
! N| [N you had visited long ago!
S S S
[J;[m Once you have the string path to get you out, fill it in at
N S - el dw A ThePathOutOfMyTwistyMaze and you'll be good to go!
E
"

Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last
part.... but this one’s a bit different.

j In this way, you will (slowly and carefully) figure out which
E S links bring you to new maze locations and which ones turn
S W you in loops. Pay attention to the memory addresses at all
times because you might end up looping back to a cell that
N| [N you had visited long ago!
S S S
];[m Once you have the string path to get you out, fill it in at
s el Ww [} ThePathOutOfMyTwistyMaze and you'll be good to go!
E
I B One last point -- if you re-run your program, the memory

S addresses will become different, so try and do this in one run!

Part 2: DNA

Overview

We are using a doubly linked list to represent DNA!

Overview

We are using a doubly linked list to represent DNA!

The unit we will be using is a Nucleotide:

Overview

We are using a doubly linked list to represent DNA!

The unit we will be using is a Nucleotide:

struct Nucleotide {
char value;
Nucleotide* next;
Nucleotide* prev;

/* This custom macro assists with memory leak detection. */
TRACK_ALLOCATIONS_OF(Nucleotide);

h

Overview

We are using a doubly linked list to represent DNA!
The unit we will be using is a Nucleotide:

An example of what a doubly linked list looks like:

We are using a doubly linked list to represent DNA!
The unit we will be using is a Nucleotide:

An example of what a doubly linked list looks like:

We are using a doubly linked list to represent DNA!
The unit we will be using is a Nucleotide:
An example of what a doubly linked list looks like:

Note that the first T has a nullptr as its prev pointer, and the last T has a nullptr as its
next pointer.

You are tasked with implementing two core functions.

You are tasked with implementing two core functions.

Function 1: Given a pointer to the beginning of a DNA strand, free all of the associate

memory.

void deleteNucleotides(Nucleotide* dna);

You are tasked with implementing two core functions.

Function 1: Given a pointer to the beginning of a DNA strand, free all of the associate
memory.

Function 2: Given a pointer to the beginning of a DNA strand, return a string representing the
content of the strand.

Using this function on the above strand would return TAGCAT.

string fromDNA(Nucleotide* dna);

Function 3: Given a string representing a DNA strand, build up a corresponding doubly
linked list and return a pointer to the beginning of the strand.

Nucleotide* toStrand(const string& dna);

Function 3: Given a string representing a DNA strand, build up a corresponding doubly
linked list and return a pointer to the beginning of the strand.

Calling this function give TAGCAT would construct the strand above.

Nucleotide* toStrand(const string& dna);

Part 1 && 2 Notes

e If you are having trouble with doubly linked list:
o End of lecture 21.
o Problems 6 to 9 in Section 7.

Part 1 && 2 Notes

e If you are having trouble with doubly linked list:
o End of lecture 21.
o Problems 6 to 9 in Section 7.

e NO RECURSION!

Part 1 && 2 Notes

e If you are having trouble with doubly linked list:
o End of lecture 21.
o Problems 6 to 9 in Section 7.

e NO RECURSION!
e Do not use other containers.

Part 1 && 2 Notes

e If you are having trouble with doubly linked list:
o End of lecture 21.
o Problems 6 to 9 in Section 7.

e NO RECURSION!
e Do not use other containers.
e No memory allocation in part 1, yes memory allocation in part 2.

Part 1 && 2 Notes

e If you are having trouble with doubly linked list:
o End of lecture 21.
o Problems 6 to 9 in Section 7.

NO RECURSION!

Do not use other containers.

No memory allocation in part 1, yes memory allocation in part 2.
Draw pictures! Even Keith does that :)

Part 1 && 2 Notes

e If you are having trouble with doubly linked list:
o End of lecture 21.
o Problems 6 to 9 in Section 7.

NO RECURSION!

Do not use other containers.

No memory allocation in part 1, yes memory allocation in part 2.

Draw pictures! Even Keith does that :)

Test your code before moving on. These functions are the foundation moving forward.

Function 4: Given a pointer to the beginning of a DNA strand dna, look for a target sequence
target.

Nucleotide* findFirst(Nucleotide* dna, Nucleotide* target);

Function 4: Given a pointer to the beginning of a DNA strand dna, look for a target sequence
target.

If found, return a pointer to the beginning of that sequence.

Nucleotide* findFirst(Nucleotide* dna, Nucleotide* target);

Function 4: Given a pointer to the beginning of a DNA strand dna, look for a target sequence
target.

If found, return a pointer to the beginning of that sequence.

Otherwise, return a nullptr.

Nucleotide* findFirst(Nucleotide* dna, Nucleotide* target);

Part 3

Given this dna:

dna

{7 - A

Part 3

Given this dna:
dna

{7 - A

And this target:

S @

target

Part 3

Given this dna:
dna

B -E-E-E -

And this target:

k]

target

Where should the pointer we are returning be pointing to?

Part 3

Given this dna:

dna l

B -E-E-E -

And this target:

k]

target

Where should the pointer we are returning be pointing to?

Part 3 Notes

e No recursion, no container, new memory allocation, no problem :)

Part 3 Notes

e No recursion, no container, new memory allocation, no problem :)
e If the target sequence is empty, you should return a pointer to the beginning of the
DNA strand.

Part 3 Notes

e No recursion, no container, new memory allocation, no problem :)
e If the target sequence is empty, you should return a pointer to the beginning of the

DNA strand.
e You may assume that target and dna are pointing to completely different Nucleotide

objects

Part 3 Notes

e No recursion, no container, new memory allocation, no problem :)

e If the target sequence is empty, you should return a pointer to the beginning of the
DNA strand.

e You may assume that target and dna are pointing to completely different Nucleotide

objects
e When in doubt, pictures and well-constructed tests are your best friends!

Function 5: Given a pointer to the beginning of a DNA strand dna by reference, look for a
target sequence target.

bool spliceFirst(Nucleotide*& dna, Nucleotide* target);

Function 5: Given a pointer to the beginning of a DNA strand dna by reference, look for a
target sequence target.

If found, remove the sequence from that strand and return true.

bool spliceFirst(Nucleotide*& dna, Nucleotide* target);

Function 5: Given a pointer to the beginning of a DNA strand dna by reference, look for a
target sequence target.

If found, remove the sequence from that strand and return true.

If not found, leave the strand as it is and return false.

bool spliceFirst(Nucleotide*& dna, Nucleotide* target);

Part 4

T ey 1A

Only the first instance of the sequence should be removed:

dna

-

T

o w ably gy b

chineg]

target

Part 4

T ey 1A

Only the first instance of the sequence should be removed:

dna

-

T

o w ably gy b

chineg]

target

Result:

dna

(ORERERS ORISR ISR

Part 4

LA 1A

dna might be updated in the process (that is why we passed it in by reference):

dna

I

i
o

target

Part 4

LA 1A

dna might be updated in the process (that is why we passed it in by reference):

I

dna
NG
(&1 T
T
target
Result:
dna
v

Part 4 Notes

e Utilize the earlier parts.

Part 4 Notes

e Utilize the earlier parts.
e Free the sub-strand you sliced out.

Part 4 Notes

e Utilize the earlier parts.
e Free the sub-strand you sliced out.
e Every note from before holds.

