
YEAH A8

The Adventures of Links



Assignment overview

This is the penultimate 106B assignment!

This assignment is due Friday 3/12, and the grace period expires the following Sunday. 

You’re welcome to work in pairs on this assignment.



Assignment overview

This assignment consists of two parts:

1. Labyrinth - Using your debugger skills, can you escape a linked list labyrinth, made 
specifically for you?

2. DNA - Now that you’re comfortable inspecting linked lists, you’ll need to implement a 
series of functions that operate on nucleotides represented by linked lists!



Part 1: Labyrinth

In this first part, you’ll be attempting to escape from a maze!



Part 1: Labyrinth

In this first part, you’ll be attempting to escape from a maze!

To escape, you’ll need to collect three magic items: a wand, a spellbook, and a potion.

This maze exists as a linked structure consisting of these elements:



Part 1: Labyrinth

In this first part, you’ll be attempting to escape from a maze!

To escape, you’ll need to collect three magic items: a wand, a spellbook, and a potion.

This maze exists as a linked structure consisting of these elements:

Remember enums? 
Wish you could forget 
them? :D



Part 1: Labyrinth

Here’s what an example maze might look like!

Imagine each of the boxes to 
be a MazeCell struct. 
Notice that not all have 4 
valid arrow directions. 
Directions that don’t lead to 
other cells are nullptr.



Part 1: Labyrinth

Here’s what an example maze might look like!

Imagine each of the boxes to 
be a MazeCell struct. 
Notice that not all have 4 
valid arrow directions. 
Directions that don’t lead to 
other cells are nullptr.

The smiley face indicates 
that you’ll begin at a random 
location in the maze!



Part 1: Labyrinth

Here’s what an example maze might look like!

Imagine each of the boxes to 
be a MazeCell struct. 
Notice that not all have 4 
valid arrow directions. 
Directions that don’t lead to 
other cells are nullptr.

The smiley face indicates 
that you’ll begin at a random 
location in the maze!

As you can see, most 
MazeCells are empty, but 
some have the magical items 
in them!



Part 1: Labyrinth

Here’s an example path through the labyrinth:



Part 1: Labyrinth

Here’s an example path through the labyrinth:

In this path, we effectively 
went from cell start to 
start->east->south.



Part 1: Labyrinth

Here’s an example path through the labyrinth:

In this path, we effectively 
went from cell start to 
start->east->south.

This path was valid because 
we didn’t go through any 
“walls” (i.e. cells that aren’t 
connected), and we even 
found a magic item!



Part 1: Labyrinth

Here’s an example path through the labyrinth:

In this path, we effectively 
went from cell start to 
start->east->south.

This path was valid because 
we didn’t go through any 
“walls” (i.e. cells that aren’t 
connected), and we even 
found a magic item!

You could represent this 
subpath as the string “ES”, 
where each character 
represents a direction you 
went from the starting 
location.



Part 1: Labyrinth

Your first task is to write the above function ^^



Part 1: Labyrinth

Your first task is to write the above function ^^

Given a starting MazeCell* and a string that represents a path you can take through the 
maze (i.e. NNNSEWWSSENSWENSEEWS), return whether this path was a valid path 
leading to freedom!



Part 1: Labyrinth

Your first task is to write the above function ^^

Given a starting MazeCell* and a string that represents a path you can take through the 
maze (i.e. NNNSEWWSSENSWENSEEWS), return whether this path was a valid path 
leading to freedom!

A path leads to freedom if it: 1- never attempts to move into a direction that’s nullptr (i.e. 
never goes through a “wall”), and 2 - picks up all 3 magical items. 



Part 1: Labyrinth

Your first task is to write the above function ^^

Given a starting MazeCell* and a string that represents a path you can take through the 
maze (i.e. NNNSEWWSSENSWENSEEWS), return whether this path was a valid path 
leading to freedom!

A path leads to freedom if it: 1- never attempts to move into a direction that’s nullptr (i.e. 
never goes through a “wall”), and 2 - picks up all 3 magical items. 

You should expect to iterate through the entire string, not stopping early unless you’re asked 
to go through a wall (return false).



Part 1: Labyrinth

Some notes about the problem:

- You can implement this iteratively or recursively, whichever you choose :)



Part 1: Labyrinth

Some notes about the problem:

- You can implement this iteratively or recursively, whichever you choose :)
- You can assume that the startLocation is not nullptr, and that path always 

contains NSEW characters.



Part 1: Labyrinth

Some notes about the problem:

- You can implement this iteratively or recursively, whichever you choose :)
- You can assume that the startLocation is not nullptr, and that path always 

contains NSEW characters.
- Don’t assume for this part that paths are bi-directional, but we don’t anticipate this 

being a problem, because all you need to do is follow the characters in the path.



Part 1: Labyrinth

Some notes about the problem:

- You can implement this iteratively or recursively, whichever you choose :)
- You can assume that the startLocation is not nullptr, and that path always 

contains NSEW characters.
- Don’t assume for this part that paths are bi-directional, but we don’t anticipate this 

being a problem, because all you need to do is follow the characters in the path.
- You shouldn't be allocating any new cells here. Making temporary pointers is fine, but 

you shouldn’t be using the new keyword.



Part 1: Labyrinth

Some notes about the problem:

- You can implement this iteratively or recursively, whichever you choose :)
- You can assume that the startLocation is not nullptr, and that path always 

contains NSEW characters.
- Don’t assume for this part that paths are bi-directional, but we don’t anticipate this 

being a problem, because all you need to do is follow the characters in the path.
- You shouldn't be allocating any new cells here. Making temporary pointers is fine, but 

you shouldn’t be using the new keyword.
- One tricky edge case - if you find all three items, keep looping through the string. If 

you happen to also move through a wall, you should return false anway. 



Part 1: Labyrinth

Some notes about the problem:

- You can implement this iteratively or recursively, whichever you choose :)
- You can assume that the startLocation is not nullptr, and that path always 

contains NSEW characters.
- Don’t assume for this part that paths are bi-directional, but we don’t anticipate this 

being a problem, because all you need to do is follow the characters in the path.
- You shouldn't be allocating any new cells here. Making temporary pointers is fine, but 

you shouldn’t be using the new keyword.
- One tricky edge case - if you find all three items, keep looping through the string. If 

you happen to also move through a wall, you should return false anway. 

Any Questions?



Part 1.5: Escape from the Labyrinth

Now that you’ve written a function that can determine whether a path gets you out of a 
labyrinth, it’s your turn to find your way out of a personalized one!



Part 1.5: Escape from the Labyrinth

Now that you’ve written a function that can determine whether a path gets you out of a 
labyrinth, it’s your turn to find your way out of a personalized one!

In the file LabyrinthEscape.cpp, you’ll need to put your name in the string myName:



Part 1.5: Escape from the Labyrinth

Once you’ve put your name into the file, set a breakpoint on the first test in the file (for me 
it’s line 33). Run your code in the debugger, and you’ll be placed in a maze personally 
generated for your name!



Part 1.5: Escape from the Labyrinth

Once you’ve put your name into the file, set a breakpoint on the first test in the file (for me 
it’s line 33). Run your code in the debugger, and you’ll be placed in a maze personally 
generated for your name!

This is what your debugger pane should look like when you hit the breakpoint:



Part 1.5: Escape from the Labyrinth

Once you’ve put your name into the file, set a breakpoint on the first test in the file (for me 
it’s line 33). Run your code in the debugger, and you’ll be placed in a maze personally 
generated for your name!

This is what your debugger pane should look like when you hit the breakpoint:

You’ve been given a 
startLocation! Open 
it up, and it should 
behave like the 
MazeCell’s that you’ve 
seen before.



Part 1.5: Escape from the Labyrinth

Here’s what opening the startLocation yields me:



Part 1.5: Escape from the Labyrinth

Here’s what opening the startLocation yields me:

Notice that there’s 
nothing in the 
whatsHere field!



Part 1.5: Escape from the Labyrinth

Here’s what opening the startLocation yields me:

Notice that there’s 
nothing in the 
whatsHere field!

Also, the only non-wall 
place we can go is in the 
west direction! Let’s go 
there :) 



Part 1.5: Escape from the Labyrinth

Here’s what opening the west location yields me:

Rats! Nothing here too!



Part 1.5: Escape from the Labyrinth

Here’s what opening the west location yields me:

Rats! Nothing here too!

Look inside the indented (west) 
struct. Notice that the 
west->east memory address is 
identical to the startLocation 
address. In this problem, all paths 
are bi-directional, so take a 
second to register why this must 
always be true.



Part 1.5: Escape from the Labyrinth

Eventually, you’ll find an item!

Quiz question: What is the string 
path starting at startLocation 
that find the POTION?



Part 1.5: Escape from the Labyrinth

Eventually, you’ll find an item!

Quiz question: What is the string 
path starting at startLocation 
that find the POTION?

Answer: “WSSSE”



Part 1.5: Escape from the Labyrinth

Your job is to keep poking around this maze, recording where you’ve been / where you’re 
going, until you can find all 3 magic items!



Part 1.5: Escape from the Labyrinth

Your job is to keep poking around this maze, recording where you’ve been / where you’re 
going, until you can find all 3 magic items!

We highly recommend drawing lots of pictures so that you can construct an image of your 
maze! 



Part 1.5: Escape from the Labyrinth

Your job is to keep poking around this maze, recording where you’ve been / where you’re 
going, until you can find all 3 magic items!

We highly recommend drawing lots of pictures so that you can construct an image of your 
maze! 

Once you have a good idea of where your items are, write out the string path that hits all 3 
of your items (i.e. NNSSEWEWWWESNEENESNWS). Put that path in the variable 
ThePathOutOfMyMaze variable and run the tests -- if the test passes, then you’ve 
successfully escaped!



Part 1.5: Escape from the Labyrinth

Your job is to keep poking around this maze, recording where you’ve been / where you’re 
going, until you can find all 3 magic items!

We highly recommend drawing lots of pictures so that you can construct an image of your 
maze! 

Once you have a good idea of where your items are, write out the string path that hits all 3 
of your items (i.e. NNSSEWEWWWESNEENESNWS). Put that path in the variable 
ThePathOutOfMyMaze variable and run the tests -- if the test passes, then you’ve 
successfully escaped!

Any questions?



Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last 
part…. but this one’s a bit different.

This time, the NSEW pointers may point in any direction! (for 
example, in one MazeCell, east may actually point south!)

More simply, put, the names of the 4 pointers in the 
MazeCell have no directional meaning.



Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last 
part…. but this one’s a bit different.

This time, the NSEW pointers may point in any direction! (for 
example, in one MazeCell, east may actually point south!)

More simply, put, the names of the 4 pointers in the 
MazeCell have no directional meaning.

Luckily, you can still find a way out of the maze! For example, 
the path SW finds one of the magical items!



Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last 
part…. but this one’s a bit different.

When solving this maze, we’ve guaranteed that the 
directions wont change on you (i.e. the path SW will always 
find the top item in this maze), but you’re going to have to 
spend more time mapping this maze out.



Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last 
part…. but this one’s a bit different.

When solving this maze, we’ve guaranteed that the 
directions wont change on you (i.e. the path SW will always 
find the top item in this maze), but you’re going to have to 
spend more time mapping this maze out.

We’ve also guaranteed again that all paths are bi-directional, 
but as you can see, you’re going to need to be careful to 
figure out which path is the way back.



Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last 
part…. but this one’s a bit different.

To determine whether a neighboring pointer moves you to a 
new location, you can look at the memory address



Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last 
part…. but this one’s a bit different.

To determine whether a neighboring pointer moves you to a 
new location, you can look at the memory address

If I move east, 
which direction 
moves me back 
to the start 
location?



Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last 
part…. but this one’s a bit different.

To determine whether a neighboring pointer moves you to a 
new location, you can look at the memory address

If I move east, 
which direction 
moves me back 
to the start 
location?



Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last 
part…. but this one’s a bit different.

In this way, you will (slowly and carefully) figure out which 
links bring you to new maze locations and which ones turn 
you in loops. Pay attention to the memory addresses at all 
times because you might end up looping back to a cell that 
you had visited long ago!



Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last 
part…. but this one’s a bit different.

In this way, you will (slowly and carefully) figure out which 
links bring you to new maze locations and which ones turn 
you in loops. Pay attention to the memory addresses at all 
times because you might end up looping back to a cell that 
you had visited long ago!

Once you have the string path to get you out, fill it in at 
ThePathOutOfMyTwistyMaze and you’ll be good to go!



Part 1.6: Escape from a twisty labyrinth

In the last portion of part 1, your job is to escape from a labyrinth like the one from the last 
part…. but this one’s a bit different.

In this way, you will (slowly and carefully) figure out which 
links bring you to new maze locations and which ones turn 
you in loops. Pay attention to the memory addresses at all 
times because you might end up looping back to a cell that 
you had visited long ago!

Once you have the string path to get you out, fill it in at 
ThePathOutOfMyTwistyMaze and you’ll be good to go!

One last point -- if you re-run your program, the memory 
addresses will become different, so try and do this in one run!



Part 2: DNA



Overview

We are using a doubly linked list to represent DNA!



Overview

We are using a doubly linked list to represent DNA!

The unit we will be using is a Nucleotide:



Overview

We are using a doubly linked list to represent DNA!

The unit we will be using is a Nucleotide:



Overview

We are using a doubly linked list to represent DNA!

The unit we will be using is a Nucleotide:

An example of what a doubly linked list looks like:



Overview

We are using a doubly linked list to represent DNA!

The unit we will be using is a Nucleotide:

An example of what a doubly linked list looks like:



Overview

We are using a doubly linked list to represent DNA!

The unit we will be using is a Nucleotide:

An example of what a doubly linked list looks like:

Note that the first T has a nullptr as its prev pointer, and the last T has a nullptr as its
next pointer.



Part 1

You are tasked with implementing two core functions.



Part 1

You are tasked with implementing two core functions.

Function 1: Given a pointer to the beginning of a DNA strand, free all of the associate 
memory.



Part 1

You are tasked with implementing two core functions.

Function 1: Given a pointer to the beginning of a DNA strand, free all of the associate 
memory.

Function 2: Given a pointer to the beginning of a DNA strand, return a string representing the 
content of the strand.

Using this function on the above strand would return TAGCAT.



Part 2

Function 3: Given a string representing a DNA strand, build up a corresponding doubly 
linked list and return a pointer to the beginning of the strand.



Part 2

Function 3: Given a string representing a DNA strand, build up a corresponding doubly 
linked list and return a pointer to the beginning of the strand.

Calling this function give TAGCAT would construct the strand above.



Part 1 && 2 Notes

● If you are having trouble with doubly linked list:
○ End of lecture 21.
○ Problems 6 to 9 in Section 7.



Part 1 && 2 Notes

● If you are having trouble with doubly linked list:
○ End of lecture 21.
○ Problems 6 to 9 in Section 7.

● NO RECURSION!



Part 1 && 2 Notes

● If you are having trouble with doubly linked list:
○ End of lecture 21.
○ Problems 6 to 9 in Section 7.

● NO RECURSION!
● Do not use other containers.



Part 1 && 2 Notes

● If you are having trouble with doubly linked list:
○ End of lecture 21.
○ Problems 6 to 9 in Section 7.

● NO RECURSION!
● Do not use other containers.
● No memory allocation in part 1, yes memory allocation in part 2.



Part 1 && 2 Notes

● If you are having trouble with doubly linked list:
○ End of lecture 21.
○ Problems 6 to 9 in Section 7.

● NO RECURSION!
● Do not use other containers.
● No memory allocation in part 1, yes memory allocation in part 2.
● Draw pictures! Even Keith does that :)



Part 1 && 2 Notes

● If you are having trouble with doubly linked list:
○ End of lecture 21.
○ Problems 6 to 9 in Section 7.

● NO RECURSION!
● Do not use other containers.
● No memory allocation in part 1, yes memory allocation in part 2.
● Draw pictures! Even Keith does that :)
● Test your code before moving on. These functions are the foundation moving forward.



Part 3

Function 4: Given a pointer to the beginning of a DNA strand dna, look for a target sequence 
target.



Part 3

Function 4: Given a pointer to the beginning of a DNA strand dna, look for a target sequence 
target.

If found, return a pointer to the beginning of that sequence.



Part 3

Function 4: Given a pointer to the beginning of a DNA strand dna, look for a target sequence 
target.

If found, return a pointer to the beginning of that sequence.

Otherwise, return a nullptr.



Part 3

Given this dna:



Part 3

Given this dna:

And this target:



Part 3

Given this dna:

And this target:

Where should the pointer we are returning be pointing to?



Part 3

Given this dna:

And this target:

Where should the pointer we are returning be pointing to?



Part 3 Notes

● No recursion, no container, new memory allocation, no problem :)



Part 3 Notes

● No recursion, no container, new memory allocation, no problem :)
● If the target sequence is empty, you should return a pointer to the beginning of the 

DNA strand.



Part 3 Notes

● No recursion, no container, new memory allocation, no problem :)
● If the target sequence is empty, you should return a pointer to the beginning of the 

DNA strand.
● You may assume that target and dna are pointing to completely different Nucleotide 

objects



Part 3 Notes

● No recursion, no container, new memory allocation, no problem :)
● If the target sequence is empty, you should return a pointer to the beginning of the 

DNA strand.
● You may assume that target and dna are pointing to completely different Nucleotide 

objects
● When in doubt, pictures and well-constructed tests are your best friends!



Part 4

Function 5: Given a pointer to the beginning of a DNA strand dna by reference, look for a 
target sequence target.



Part 4

Function 5: Given a pointer to the beginning of a DNA strand dna by reference, look for a 
target sequence target.

If found, remove the sequence from that strand and return true.



Part 4

Function 5: Given a pointer to the beginning of a DNA strand dna by reference, look for a 
target sequence target.

If found, remove the sequence from that strand and return true.

If not found, leave the strand as it is and return false.



Part 4

Only the first instance of the sequence should be removed:



Part 4

Only the first instance of the sequence should be removed:

Result:



Part 4

dna might be updated in the process (that is why we passed it in by reference):



Part 4

dna might be updated in the process (that is why we passed it in by reference):

Result:



Part 4 Notes

● Utilize the earlier parts.



Part 4 Notes

● Utilize the earlier parts.
● Free the sub-strand you sliced out.



Part 4 Notes

● Utilize the earlier parts.
● Free the sub-strand you sliced out.
● Every note from before holds.


